⁸¹Br Nuclear Quadrupole Resonance of Cs₂ZnBr₄ and Crystal Stability of Compounds of A₂MX₄ Type

Hirokazu Nakayama,† Nobuo Nakamura, and Hideaki Chihara* Department of Chemistry, Faculty of Science, Osaka University, Toyonaka, Osaka 560 (Received July 16, 1986)

The temperature dependences of ⁸¹Br nuclear quadrupole resonance frequencies and quadrupolar relaxation times of Cs₂ZnBr₄ were measured. The librational motion of [ZnBr₄]²⁻ about the Zn-Br axis parallel to the a axis in the crystal is more active than those about the other axes. The reason why this compound shows no phase transition can be accounted for by the molecular packing, especially the packing of [ZnBr₄]²⁻ along the a axis. General examination of the relative size of cation/anion in the class of compounds of A₂MX₄ type led to a criterion which may be used to rationalize existence and absence of a phase transition.

A large number of A₂MX₄ type of compounds crystallize in the isomorphous structure with the space group Pnma and undergo analogous sequence of phase transitions. Among them much attention has recently been focused on Rb2ZnBr4 and Rb2ZnCl4 from experimental and theoretical points of view because they assume typical incommensurate structure in certain temperature regions. Cs₂HgBr₄¹⁾ and Cs₂CdBr₄²⁾ also belong to this group and have interested us as they3-6) show similar successive phase transitions from the normal room temperature phase to the phase of incommensurate structure and then to the commensurate phase on further cooling. We studied the microscopic structure of the incommensurate phases of these latter two materials by relating the nuclear quadrupole resonance results with a model calculation of the electric field gradients at the bromine sites.7)

Cs₂ZnBr₄ also has the A₂MX₄ composition and crystallizes in the *Pnma* structure.⁸⁾ However no phase transition has been found in this compound so far.³⁾ These facts suggest that the structural stability of this type of compounds depends on a very intricate balance of interatomic forces and that the phase transition phenomena have to occur when such an intricate balance is destroyed. Hence it will be of great interest to uncover a factor or factors which govern the crystal stability and the cooperative phase change phenomena of such series of materials.

This paper is aimed first at deducing some information about the feature of the molecular motion in Cs₂ZnBr₄ from the temperature dependence of nuclear quadrupole resonance frequencies and spin-lattice relaxation times. The second purpose is to pin down the physical properties that determine the crystal structure and trigger the phase transition of these materials.

Experimental

Crystalline Cs₂ZnBr₄⁸⁾ was obtained by slow evaporation of aqueous solution of the stoichiometric amounts of CsBr and ZnBr₂ at room temperature. The sample was recrystallized twice from aqueous solution, ground and sealed in an ampule with helium gas for the NQR measurements.

The ⁸¹Br NQR signal was observed with a home-built pulsed FT spectrometer based on a MATEC spectrometer. The matching unit was placed in the cryostat in order to make impedance matching easy. Details of the apparatus and its operation were reported elsewhere.⁹⁾

The temperature dependence was determined by using a simple cryostat with liquid nitrogen as the refrigerant. The temperature, kept constant to within ± 0.1 K during the NQR measurements, was measured with Chromel P-Constantan thermocouples.

Results and Discussion

Cs₂ZnBr₄. The temperature dependence of the nuclear quadrupole resonance frequencies is shown in Fig. 1. There are three resonance lines in the temperature range between 77 and 300 K in accordance with the X-ray structure data.8) frequency data agree with those by Plesko et al.3) within 100 kHz in the temperature range measured. We may assign the three resonance lines ν_1 , ν_2 , and v_3 to the bromine 1, 2, and 3 in the structure data⁸⁾ respectively by reference to the NQR data of the isomorphous Cs₂CdBr₄.6) One sees from this figure that the temperature coefficient of the resonance line at the site 1 is only $-2 \,\mathrm{kHz}\,\mathrm{K}^{-1}$ in comparison with -6.5 kHz for the line at the site 2, indicating that the librational motion of the [ZnBr₄]²⁻ tetrahedron is highly anisotropic. Since the direction of the bond between the bromine at the site 1 and the central metal almost coincides with the crystallographic a-axis, the above fact means that only the libration of the anion about the a-axis is highly excited. This interpretation is also supported by the relaxation time measurements. The temperature dependence of the 81Br spinlattice relaxation time, T_1 , is shown in Fig. 2. The relaxation rate, T_1^{-1} , obeys the T^2 law¹⁰⁾ for all the

[†] Present address: Institute of Chemistry, College of General Education, Osaka University, Toyonaka, Osaka 560.

lines between 77 and 300 K, indicating that the relaxation of the bromine nuclei at all the sites is governed by the librational motion of the [ZnBr₄]²-tetrahedron. According to the theory of the quadrupolar relaxation¹⁰ due to vibration,

$$T_1^{-1}(\nu_1):T_1^{-1}(\nu_2):T_1^{-1}(\nu_3)=\nu_1^2:\nu_2^2:\nu_3^2$$

holds if the molecular or the ionic motion is isotropic. Hence, the relaxation time of the ν_1 line would be the shortest if the isotropic anionic librations were excited. The experimental T_1 of the ν_1 is, however, more than twice as long as those of the other two lines, which supports again that the libration about the a-

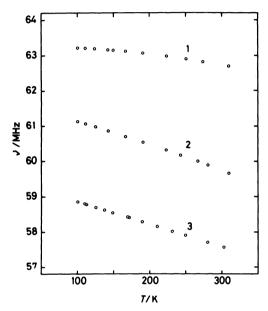


Fig. 1. Temperature dependence of ⁸¹Br NQR frequencies in Cs₂ZnBr₄.

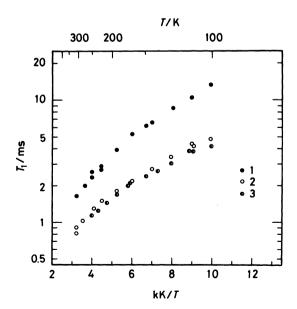


Fig. 2. Temperature dependence of ⁸¹Br NQR spinlattice relaxation times in Cs₂ZnBr₄.

axis, which does not essentially affect the T_1 for ν_1 , is sufficiently excited but those about the other axes have only small amplitudes.

In a previous paper⁷⁾ we showed that in Cs₂MBr₄ (M=Hg, Cd) the librational motion of the [MBr₄]²⁻ (M=Cd, Hg) tetrahedron about the a-axis is highly excited in their normal phases and that such anisotropic libration is responsible for the phase transition to the incommensurate phase in which the rotational displacement of the anions about the a-axis generates the incommensurate wave along the a-axis.

Thus, we see that the compounds Cs₂MBr₄ (M=Hg, Cd) and Cs₂ZnBr₄ have a common feature; i.e., the librational mode is highly excited about the a-axis in the *Pnma* phase of each substance and it may be the cause of existence or non-existence of successive phase transitions in these isomorphous substances.

Phase Relation and Stability of A₂MX₄ Structure. The compounds Cs₂CdBr₄3,5,6) and Cs₂HgBr₄^{1,3-5)} show successive phase transitions and become incommensurate in a certain temperature region. Their structures and phase transitions such as the transition temperature, the length and distance of the incommensurate wave vectors and the phase relation below *T*_c, etc., are very similar to each other. On the other hand, Cs₂ZnBr₄3) shows no phase transition although its crystal structure⁸⁾ at room temperature is isomorphous to Cs₂HgBr₄1) and Cs₂CdBr₄,2) and these three compounds show common characteristic as mentioned in the preceding section. In an attempt to uncover a factor or factors which govern the phase

The space group of the highest temperature phase of each of A₂MX₄ type compounds (A=K, Na, Rb, Cs; B=Hg, Cd, Zn, Co, Mn, Cu; X=Cl, Br, I)¹,²,8,¹¹-25) is listed in Table 1. From this table two interesting

relations and the stability of the *Pnma* structure, a comparison will be made of the structural character-

istics of a variety of A₂MX₄ type compounds.

Table 1. Space Group of A₂MX₄ Type of Compounds

Complex	Cation				
anion	Na	K	Rb	Cs	
HgCl ₄ HgBr ₄ HgI ₄				Pnma ¹¹⁾ Pnma ¹⁾ P2 ₁ ¹²⁾	
CdCl ₄ CdBr ₄ CdI ₄	Pbam ¹³⁾			$I4/mmm^{14}$ $Pnma^{2}$	
ZnCl ₄ ZnBr ₄ ZnI ₄	Pnma ¹⁵⁾	Pnma ¹⁶⁾	$Pnma^{17)} \ Pnma^{19)} \ P2_1/m^{20)}$	Pnma ¹⁸⁾ Pnma ³⁾ Pnma ²¹⁾	
$CoCl_4$	$Pnma^{15)}$	$Pnma^{22)}$	$Pnma^{23)}$	$Pnma^{24}$	
CoBr ₄		$Pnma^{25)} \ P2_1/m^{20)}$	$Pnma^{25}$	$Pnma^{25}$	
CoI_4		$P2_{1}/m^{22}$	$P2_1/m^{22)}$	$Pnma^{22)}$	

properties can be extracted.

1) The compounds that have the common cation and the anion of almost the same size crystallize in the same space group irrespective of the chemical species of metallic element. A₂CoX₄ and A₂ZnX₄ have the same space group when A and X are common. Thus the space group of both Cs₂CoCl₄ and Cs₂ZnCl₄ is *Pnma* and the space group of Rb₂CoI₄ and Rb₂ZnI₄ is P2₁/m. Moreover, the lattice constants in A₂CoX₄ and A₂ZnX₄ are almost the same as shown in Table 2. The same relation can be seen between A₂HgBr₄ and A₂CdBr₄.

Table 2. Space Group and Lattice Parameters of A₂ZnX₄ and A₂CoX₄

ngzinią and ngdoną						
0 1	<u> </u>	Lattice constant				
Compound	Space group	a/Å	b/Å	c/Å		
Na ₂ ZnCl ₄	Pnma15)	8.053	6.402	13.695		
Na_2CoCl_4	$Pnma^{15)}$	8.073	6.428	13.713		
K_2ZnCl_4	$Pnma^{16)}$	8.926	7.256	12.402		
K_2CoCl_4	$Pnma^{22)}$	8.933	7.240	12.421		
Rb_2ZnCl_4	$Pmcn^{17)}$	7.282	12.726	9.257		
Rb_2CoCl_4	$Pmcn^{23}$	7.283	12.723	9.272		
Cs_2ZnCl_4	$Pnma^{18)}$	9.758	7.400	12.970		
Cs_2CoCl_4	$Pnma^{24}$	9.737	7.392	12.972		
Rb ₂ ZnBr ₄	$Pmcn^{19}$	7.656	13.343	9.708		
Rb_2CoBr_4	$Pmcn^{25}$	7.651	13.371	9.718		
Cs ₂ ZnBr ₄	$Pnma^{3)}$	10.196	7.770	13.517		
Cs_2CoBr_4	$Pnma^{25)}$	10.181	7.723	13.492		
Rb_2ZnI_4	$P2_1/m^{20}$					
Rb_2CoI_4	$P2_1/m^{22}$	10.383	8.144	7.657		
Cs_2ZnI_4	$Pmcn^{21)}$	8.29	14.45	10.84		
Cs_2CoI_4	$Pmcn^{22)}$	8.297	14.414	10.833		

Table 3. Existence of Phase Transition or Transitions in A₂MX₄ Compounds

Complex anion				
	Na	K	Rb	Cs
HgCl ₄				YES ²⁶)
$HgBr_4$				YES1,4,7)
HgI_4				
$CdCl_4$				
$CdBr_4$				YES4,5)
CdI_4				
$ZnCl_4$;	YES28)	YES28)	$NO^{29)}$
$ZnBr_4$			YES ²⁸⁾	NO4)
\mathbf{Z} n $\mathbf{I_4}$				YES30)
$CoCl_4$?	?	?	NO ³¹⁾
CoBr ₄		?	?	;
CoI4		?	?	?

2) The relative size of the cation and the complex anion governs the space group of the highest temperature phase. Those are the properties that

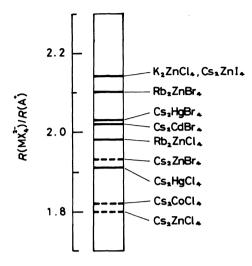


Fig. 3. Ratio of the effective radius of the complex anion $[MX_4]^{2-}$ to the radius of cation A^+ for various compounds.

—: Indicates a compound which has one or more phase transitions.

---: Indicates a compound which has no phase transition.

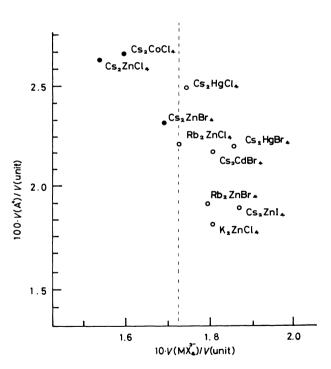


Fig. 4. The effective volume of the complex anion $[MX_4]^{2-}$ is plotted against the volume of the cation A^+ both reduced by the volume of the unit cell.

•: Indicates a compound which has phase transitions.

O: Indicates a compound which has no phase transition.

determine not only the crystal structure but also the phase relation. Table 31,3-6,26-31) suggests that the key factor for the highest temperature phase to undergo a phase transition into an incommensurate phase is the relative size of the cation and the complex anion. In order to show that it is the key factor in a more quantitative manner, the relative sizes of the cation and the anion were calculated for each of these compounds and the result is shown in Fig. 3. The ionic radii of the cations were taken from reference 32 as 1.52 Å for K+, 1.66 Å for Rb+ and 1.81 Å for Cs+. The ionic radii of [MX₄]²⁻ complex anions were obtained by adding interatomic distance of M-X and the atomic radius of the X atom. The ratios between the ionic radii, $R([MX_4]^{2-})/R(A^+)$, calculated from these data are arranged in Fig. 3, where the solid lines represent compounds which undergo a phase transition or transitions and the broken lines those without

any transition. This graph shows that the compounds with the ratio value between 1.9 and 2.2 show a phase transition except for slight displacement of Cs_2ZnBr_4 . If, on the other hand, the volume occupied by a cation is plotted against the volume occupied by a complex anion, both reduced by the unit cell volume (Fig. 4), the compounds for which $V([MX_4]^{2-})/V(\text{unit cell})$ is larger than 0.172 undergo at least one phase transition almost independent of the value of $V(A^+)/V(\text{unit cell})$. It thus seems that $V([MX_4]^{2-})/V(\text{unit cell})=0.172$ is the critical value for A_2MX_4 type compounds; it serves as a gross criterion for distinguishing whether a compound with A_2MX_4 type structure undergoes any phase transition or not.

We saw in the preceding section that the anisotropic interaction plays an important role in the phase transition phenomena in the A_2MX_4 type of substances. In order to search for an anisotropic property

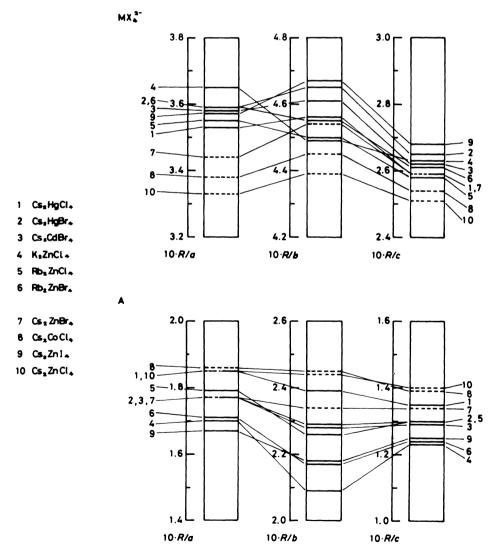


Fig. 5. Ratio of the radius of the complex anion $[MX_4]^{2-}$ and that of the cation A^+ to the individual lattice constants in various compounds are shown in the upper and the lower figures, respectively. ---: Indicates a compound which has no phase transition.

governing the crystal stability, we arranged the ionic radius $R(A^+)$ or $R([MX_4]^{2-})$ reduced by each of the lattice constants in the order of their magnitude as shown in Fig. 5. The compounds with and without any phase transition are highlighted by the solid and broken lines, respectively. These diagrams suggest that the compounds composed of a small cation and a large complex anion undergo a phase change. Especially, this tendency is distinct in regard to the quantity $R([MX_4]^{2-})/a$, i.e. the compounds with this ratio greater than 0.35 undergo some kind of phase transition. This finding is very important in that the compounds which possess an incommensurate phase show the incommensurate wave vector directed in the a-axis. Even the compounds that do not have an incommensurate phase show tripled unit cell in the a axis direction in the low temperature phase. We can therefore state that the ionic interaction along the aaxis mainly govern the stability of a particular crystal structure with regard to incommensurate modulation.

In this way we can interpret the fact that both Cs₂HgBr₄ and Cs₂CdBr₄ undergo successive phase transitions while the isomorphous Cs₂ZnBr₄ doesn't exhibit any phase transition: The anisotropic interaction along the crystallographic a-axis in Cs₂ZnBr₄ is small whereas in the former two compounds a strong cooperative interaction exists along the a-axis and may drive these materials to undergoing phase transitions on cooling.

We can now use our finding to predict the phase transition of the A_2MX_4 type of materials, i.e., a compound of A_2MX_4 type in which the value of $R([MX_4]^{2-})/a$ is slightly smaller than 0.35 is a candidate which undergoes a phase transition at high pressure because external pressure will increase this ratio up to 0.35 and then the original structure may become less stable.

References

- 1) G. K. Semin, I. M. Alymov, V. M. Burbelo, V. I. Pakhomov, and P. M. Fedorov, *Izv. Akad. Nauk. SSSR*, *Ser. Fiz.*, **42**, 2095 (1978).
- 2) D. Altermatt, H. Arend, A. Niggli, and W. Petter, *Mat. Res. Bull.*, **14**, 1391 (1979).
- 3) S. Plesko, R. Kind, and H. Arend, *Phys. Stat. Sol.*, (a), **61**, 87 (1980).
- 4) S. Plesko, V. Dvorák, R. Kind, and A. Treindl, Ferroelectrics, 36, 331 (1981).

- 5) D. Altermatt, H. Arend, V. Gramlich, A. Niggli, and W. Petter, *Acta Crystallogr.*, Sect. B, 40, 347 (1984).
- 6) S. Plesko, R. Kind, and H. Arend, Ferroelectrics, 26, 703 (1980).
- 7) H. Nakayama, N. Nakamura, and H. Chihara, to be published.
- 8) B. Morosin and E. C. Lingafelter, *Acta Crystallogr.*, 12, 744 (1959).
 - 9) H. Nakayama, Dissertation, Osaka University, 1985.
- 10) J. Van Kranendonk and M. Walker, *Phys. Rev. Lett.*, **18**, 701 (1967).
- 11) S. A. Linde, A. Ya Mikhailova, V. I. Pakhomov, V. V. Kirilenko, and V. G. Shul'ga, *Koord. Khim.*, **9**, 998 (1983).
- 12) V. I. Pakhomov and P. M. Fedorov, Kristallografiya, 17, 942 (1972).
- 13) J. Goodyear, S. A. D. Ali, and G. A. Steigmann, *Acta Crystallogr.*, Sect. B, 27, 1672 (1971).
- 14) S. Stanley and G. Elizabeth, Acta Crystallogr., 17, 790 (1964)
- 15) C. J. J. van Loon and D. Visser, *Acta Crystallogr.*, *Sect. B*, **33**, 188 (1977).
- 16) F. Milia, R. Kind, and J. Slak, *Phys. Rev.*, **B27**, 6662 (1983).
- 17) M. Wada, A. Sawada, and Y. Ishibashi, J. Phys. Soc. Jpn., 47, 1185 (1979).
 - 18) J. A. McGinnety, Inorg. Chem., 13, 1057 (1974).
- 19) T. Ueda, S. Iida and H. Terauchi, *J. Phys. Soc. Jpn.*, **51**, 3953 (1982).
- 20) W. J. Asker, D. E. Scaife, and J. A. Watts, *Aust. J. Chem.*, 25, 2301 (1972).
- 21) D. E. Scaife, Aust. J. Chem., 24, 1315 (1971).
- 22) H. J. Seifert and L. Stäudel, Z. Anorg. Allg. Chem., 429, 105 (1977).
- 23) M. Amit, A. Horowitz, and J. Makovsky, *Israel J. Chem.*, **10**, 715 (1972).
- 24) M. A. Porai-Koshits, Kristallografia, 1, 291 (1956).
- 25) H. J. Seifert and I. Al-Khudair, J. Inorg. Nucl. Chem., **37**, 1625 (1975).
- 26) V. V. Petrov, V. G. Pitsyuga, V. A. Gordeev, A. V. Bogdanova, M. A. Bagina, and A. Yu. Khalakhan, *Sov. Phys. Solid State*, **25**, 1995 (1983).
- 27) V. V. Danilov, V. V. Onopko, A. V. Bogdanova, and V. G. Shul'ga, *Sov. Phys. Solid State*, **23**, 1459 (1982).
- 28) Y. Yamada and N. Hamaya, J. Phys. Soc. Jpn., 52, 3466 (1983).
- 29) P. T. T. Wong, J. Chem. Phys., 64, 2186 (1976).
- 30) K. Gesi, J. Phys. Soc. Jpn., 20, 3535 (1981).
- 31) T. P. Melia and R. Merrifield, *J. Chem. Soc.*, (A), **1971**, 1258.
- 32) R. D. Shannon and C. T. Prewitt, *Acta Crystallogr.*, Sect. B, 25, 925 (1969).